Stoichiometrical regulation of soil organic matter decomposition and its temperature sensitivity
نویسندگان
چکیده
The decomposition of soil organic matter (SOM) can be described by a set of kinetic principles, environmental constraints, and substrate supply. Here, we hypothesized that SOM decomposition rates (R) and its temperature sensitivity (Q 10) would increase steadily with the N:C ratios of added substrates by alleviating N limitation on microbial growth. We tested this hypothesis by investigating SOM decomposition in both grassland and forest soils after addition of substrates with a range of N:C ratios. The results showed that Michaelis-Menten equations well fit the response of R to the N:C ratio variations of added substrates, and their coefficients of determination (R (2)) ranged from 0.65 to 0.89 (P < 0.01). Moreover, the maximal R, Q 10, and cumulative C emission of SOM decomposition increased exponentially with the N:C ratios of added substrates, and were controlled interactively by incubation temperature and the N:C ratios of the added substrates. We demonstrated that SOM decomposition rate and temperature sensitivity were exponentially correlated to substrate stoichiometry (N:C ratio) in both grassland and forest soils. Therefore, these correlations should be incorporated into the models for the prediction of SOM decomposition rate under warmer climatic scenarios.
منابع مشابه
Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition
The temperature sensitivity of soil organic matter (SOM) decomposition has been a crucial topic in global change research, yet remains highly uncertain. One of the contributing factors to this uncertainty is the lack of understanding about the role of rhizosphere priming effect (RPE) in shaping the temperature sensitivity. Using a novel continuous C-labeling method, we investigated the temperat...
متن کاملIs resistant soil organic matter more sensitive to temperature than the labile organic matter?
A recent paper by Knorr et al. (2005a) suggested that the decomposition of resistant soil organic matter is more temperature sensitive than labile organic matter. In Knorr et al.’s (2005a) model, the reference decay rate was presumed to be same for all pools of soil carbon. We refit Knorr et al.’s (2005a) model but allow both the activation energy and the reference decay rate to vary among soil...
متن کاملEffects of substrate availability on the temperature sensitivity of soil organic matter decomposition
Soil carbon is a major component in the global carbon cycle. Understanding the relationship between environmental changes and rates of soil respiration is critical for projecting changes in soil carbon fluxes in a changing climate. Although significant attention has been focused on the temperature sensitivity of soil organic matter decomposition, the factors that affect this temperature sensiti...
متن کاملTemperature sensitivity of greenhouse gas production in wetland soils of different vegetation
Organic matter decomposition regulates rates of carbon loss (CO2 and CH4) in wetlands and has implications for carbon sequestration in the context of changing global temperature. Here we determined the influence of temperature and vegetation type on both aerobic and anaerobic decomposition of organic matter in subtropical wetland soils. As in many other studies, increased temperature resulted i...
متن کاملDrought-resistant fungi control soil organic matter decomposition and its response to temperature
Microbial-mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016